Polarization-independent and ultra-sensitive biosensor with a one-dimensional topological photonic crystal

Author:

Su Mingyang1ORCID,Wang Chaofeng2,Li Kangsen23,Wu Leiming4,Lin Qiawu1,Zhou Renlong1,Yang Sa1ORCID

Affiliation:

1. Guangdong University of Education

2. Shenzhen University

3. Harbin Institute of Technology

4. Guangdong University of Technology

Abstract

Optical biosensor, which perceptively captures the variety of refractive index (RI) of the surrounding environment, has great potential applications in detecting property changes and types of analytes. However, the disequilibrium of light-matter interaction in different polarizations lead to the polarization-dependence and low sensitivity. Here, we propose a polarization-independent and ultrasensitive biosensor by introducing a one-dimensional topological photonic crystal (1D TPhC), where two N-period 1D photonic crystals (PhC1 and PhC2) with different topological invariants are designed for compressing the interaction region of the optical fields, and enhancing the interaction between the light and analyte. Since the strong light-matter interaction caused by the band-inversion is polarization-independent, the biosensor can obtain superior sensing performance both for TE and TM polarization modes. The sensitivity and Figure of Merit (FOM) of the designed biosensor are 1.5677×106 RIU−1 (1.3497 × 106 RIU−1) and 7.8387×1010 RIU−1deg−1 (4.4990×1010 RIU−1deg−1) for TM (TE) polarization mode, which performs two orders of magnitude enhancement compared with the reported biosensors. With the protection of the topological edge state, this biosensor has high tolerance to the thickness deviations and refractive index (RI) variations of the component materials, which can reduce the requirements on fabrication and working environment. It is anticipated that the proposed biosensor possesses excellent sensing performances, may have great potentials in environmental monitoring, medical detection, etc.

Funder

Characteristic innovation projects of universities in Guangdong Province

Scientific Key Research Fund of Guangdong Provincial Education Department

Basic and Applied Basic Research Foundation of Guangdong Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3