Performance analysis of heterostructure-based topological nanophotonic sensor

Author:

Goyal Amit Kumar,Kumar Ajay,Massoud Yehia

Abstract

AbstractIn this manuscript, a heterostructure-based topological nanophotonic structure is proposed for improved sensing performance. The topological effect is realized by connecting two dissimilar one-dimensional photonic crystal structures having overlapped photonic bandgaps. The structural parameters are optimized to regulate and alter the dispersion characteristics, which results in the opposite Zak phases. This demonstrates a robust topologsical interface state excitation at a 1737 nm operating wavelength. Further, a topological cavity structure having resonance mode at 1659 nm is formed by replacing the interface layers with a defect layer. The mode excitation is confirmed by analyzing the electric field confinement at the interface. The sensing capability of the structure is analytically evaluated by infiltrating different analytes within the cavity. The analytical results demonstrate the device’s average sensitivity of around 774 nm/Refractive index unit (RIU) along with an average high Q-factor and figure of merit of around 5.2 × 104 and 2.6234 × 104 RIU−1, respectively. Because of the higher interface mode field confinement, the proposed structure exhibits a 92% higher sensitivity, 98% improved Quality factor, 206% improvement in figure of merit, and 86% higher interface field confinement than conventional Fabry–Perot resonator structures. Thus, the proposed topological cavity structure shows its broad sensing ability (Refractive Index: 1.3–1.6) along with a low-cost, simple fabrication and characterization process, promoting the development of highly sensitive planner nanophotonic devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3