Intelligent interior atmosphere lamp system based on quantum dot LEDs for safe driving assistance

Author:

Zhu Chunxiao,Gao Jianqiao,Lu Min,Zhang Yu,Wang Zhenyu,Huang Qizhang,Wu Zhennan,Gao Yanbo,Wang YanPing1,Yu William W.2,Hu Junhua3,Bai Xue

Affiliation:

1. Changchun University of Science and Technology

2. Shandong University

3. Zhengzhou University

Abstract

A driver safety assisting system is essential to reduce the probability of traffic accidents. But most of the existing driver safety assisting systems are simple reminders that cannot improve the driver's driving status. This paper proposes a driver safety assisting system to reduce the driver's fatigue degree by the light with different wavelengths that affect people's moods. The system consists of a camera, an image processing chip, an algorithm processing chip, and an adjustment module based on quantum dot LEDs (QLEDs). Through this intelligent atmosphere lamp system, the experimental results show that blue light reduced the driver’s fatigue degree when just turned on; but as time went on, the driver’s fatigue degree rebounded rapidly. Meanwhile, red light prolonged the driver's awake time. Different from blue light alone, this effect can remain stable for a long time. Based on these observations, an algorith was designed to quantify the degree of fatigue and detect its rising trend. In the early stage, the red light is used to prolong the awake time and the blue light to suppress when the fatigue value increases, so as to maximize the awake driving time. The result showed that our device prolonged the awake driving time of the drivers by 1.95 times and reduced fatigue during driving: the quantitative value of fatigue degree generally decreased by about 0.2 times. In most experiments, the subjects were able to complete four hours of safe driving, which reached the maximum length of continuous driving at night allowed by China laws. In conclusion, our system changes the assisting system from a reminder to a helper, thus effectively reducing the driving risk.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Science and Technology Development Program of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3