Affiliation:
1. the University of Illinois at Urbana-Champaign
2. Hon Hai Research Institute
3. 1001 University Rd.
Abstract
The fabrication processes of high-speed oxide-confined single-mode (SM)-vertical-cavity surface-emitting lasers (VCSELs) are complex, costly, and often held back by reliability and yield issues, which substantially set back the high-volume processing and mass commercialization of SM-VCSELs in datacom or other applications. In this article, we report the effects of Al2O3 passivation films deposited by atomic layer deposition (ALD) on the mesa sidewalls of high-speed 850-nm SM-VCSELs. The ALD-deposited film alleviates the trapping of carriers by sidewall defects and is an effective way to improve the performance of SM-VCSELs. The ALD-passivated SM-VCSELs showed statistically significant static performance improvements and reached a believed to be record-breaking SM-modulation bandwidth of 29.1 GHz. We also propose an improved microwave small-signal equivalent circuit model for SM-VCSELs that accounts for the losses attributed to the mesa sidewalls. These findings demonstrate that ALD passivation can mitigate processing-induced surface damage, enhance the performance of SM-VCSELs, and enable mass production of high-quality SM-VCSELs for mid- to long-reach optical interconnects.
Funder
Ministry of Science and Technology, Taiwan
National Taiwan University
NTUS Innovation Cooperation
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献