SiSPRNet: end-to-end learning for single-shot phase retrieval

Author:

Ye Qiuliang1ORCID,Wang Li-Wen1,Lun Daniel P. K.12

Affiliation:

1. The Hong Kong Polytechnic University

2. The Centre for Advances in Reliability and Safety (CAiRS)

Abstract

With the success of deep learning methods in many image processing tasks, deep learning approaches have also been introduced to the phase retrieval problem recently. These approaches are different from the traditional iterative optimization methods in that they usually require only one intensity measurement and can reconstruct phase images in real-time. However, because of tremendous domain discrepancy, the quality of the reconstructed images given by these approaches still has much room to improve to meet the general application requirements. In this paper, we design a novel deep neural network structure named SiSPRNet for phase retrieval based on a single Fourier intensity measurement. To effectively utilize the spectral information of the measurements, we propose a new feature extraction unit using the Multi-Layer Perceptron (MLP) as the front end. It allows all pixels of the input intensity image to be considered together for exploring their global representation. The size of the MLP is carefully designed to facilitate the extraction of the representative features while reducing noises and outliers. A dropout layer is also equipped to mitigate the possible overfitting problem in training the MLP. To promote the global correlation in the reconstructed images, a self-attention mechanism is introduced to the Up-sampling and Reconstruction (UR) blocks of the proposed SiSPRNet. These UR blocks are inserted into a residual learning structure to prevent the weak information flow and vanishing gradient problems due to their complex layer structure. Extensive evaluations of the proposed model are performed using different testing datasets of phase-only images and images with linearly related magnitude and phase. Experiments were conducted on an optical experimentation platform (with defocusing to reduce the saturation problem) to understand the performance of different deep learning methods when working in a practical environment. The results demonstrate that the proposed approach consistently outperforms other deep learning methods in single-shot maskless phase retrieval. The source codes of the proposed method have been released in Github [see references].

Funder

University Grants Committee

Centre Centre for Advances in Reliability and Safety

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase retrieval from a single diffraction intensity pattern by generating the support constraint using deep learning;Optics & Laser Technology;2025-02

2. Phase retrieval based on the distributed conditional generative adversarial network;Journal of the Optical Society of America A;2024-08-08

3. Coordinate-Based Neural Network for Fourier Phase Retrieval;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. On the use of deep learning for phase recovery;Light: Science & Applications;2024-01-01

5. Single-Shot Phase Retrieval From a Fractional Fourier Transform Perspective;IEEE Transactions on Signal Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3