Phase retrieval based on the distributed conditional generative adversarial network

Author:

Li Lan,Pu Shasha,Jing Mingli1,Mao Yulong,Liu Xiaoya,Sun Qiyv2

Affiliation:

1. Xi’an Shiyou University

2. University of Central Florida

Abstract

Phase retrieval is about reconstructing original vectors/images from their Fourier intensity measurements. Deep learning methods have been introduced to solve the phase retrieval problem; however, most of the proposed approaches cannot improve the reconstruction quality of phase and amplitude of original images simultaneously. In this paper, we present a distributed amplitude and phase conditional generative adversarial network (D-APUCGAN) to achieve the high quality of phase and amplitude images at the same time. D-APUCGAN includes UCGAN, AUCGAN/PUCGAN, and APUCGAN. In this paper, we introduce the content loss function to constrain the similarity between the reconstructed image and the source image through the Frobenius norm and the total variation modulus. The proposed method promotes the quality of phase images better than just using amplitude images to train. The numerical experimental results show that the proposed cascade strategies are significantly effective and remarkable for natural and unnatural images, DIV2K testing datasets, MNIST dataset, and realistic data. Comparing with the conventional neural network methods, the evaluation metrics of PSNR and SSIM values in the proposed method are refined by about 2.25 dB and 0.18 at least, respectively.

Funder

Natural Science Foundation of Shaanxi Province

Xi’an Shiyou University

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase retrieval based on the distributed conditional generative adversarial network;Journal of the Optical Society of America A;2024-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3