Transformation-optics modeling of 3D-printed freeform waveguides

Author:

Nesic Aleksandar1,Blaicher Matthias12,Orlandini Emilio1,Olariu Tudor1,Paszkiewicz Maria3,Negredo Fernando3,Kraft Pascal4,Sukhova Mariia4,Hofmann Andreas5ORCID,Dörfler Willy4,Rockstuhl Carsten36,Freude Wolfgang1ORCID,Koos Christian12ORCID

Affiliation:

1. Institute of Photonics and Quantum Electronics (IPQ)

2. Institute of Microstructure Technology (IMT)

3. Institute of Theoretical Solid State Physics (TFP)

4. Institute for Applied and Numerical Mathematics (IANM)

5. Institute for Automation and Applied Informatics (IAI)

6. Institute of Nanotechnology (INT)

Abstract

Multi-photon lithography allows us to complement planar photonic integrated circuits (PIC) by in-situ 3D-printed freeform waveguide structures. However, design and optimization of such freeform waveguides using time-domain Maxwell’s equations solvers often requires comparatively large computational volumes, within which the structure of interest only occupies a small fraction, thus leading to poor computational efficiency. In this paper, we present a solver-independent transformation-optics-(TO-) based technique that allows to greatly reduce the computational effort related to modeling of 3D freeform waveguides. The concept relies on transforming freeform waveguides with curved trajectories into equivalent waveguide structures with modified material properties but geometrically straight trajectories, that can be efficiently fit into rather small cuboid-shaped computational volumes. We demonstrate the viability of the technique and benchmark its performance using a series of different freeform waveguides, achieving a reduction of the simulation time by a factor of 3–6 with a significant potential for further improvement. We also fabricate and experimentally test the simulated waveguides by 3D-printing on a silicon photonic chip, and we find good agreement between the simulated and the measured transmission at λ = 1550 nm.

Funder

Deutsche Forschungsgemeinschaft

Erasmus Mundus Joint Doctorate Program Europhotonics

European Research Council

Bundesministerium für Bildung und Forschung

Karlsruhe School of Optics and Photonics

Alfried Krupp von Bohlen und Halbach-Stiftung

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3