Modeling free-carrier absorption in ultrathin III-V solar cells with light management

Author:

D’Rozario Julia R.1ORCID,Polly Stephen J.1,Nelson George T.1,Wilt David2,Hubbard Seth M.1ORCID

Affiliation:

1. Rochester Institute of Technology

2. Spacecraft Components Technology Branch (RVSV) US Air Force Research Laboratory

Abstract

Ultrathin III-V solar cells with proper light management have become more attractive than their optically thick counterparts as they are less expensive and lightweight, can maintain photon absorption, and have high radiation tolerance for space-related applications. Comprehensive optical modeling efforts have provided pathways to improve device efficiency in ultrathin GaAs solar cells with light trapping structures. Usually, the absorption mechanism known as free-carrier absorption (FCA) is ignored in these models due to the ultrathin layers and the direct bandgap of GaAs. This manuscript reports the significance of considering FCA as a parasitic loss caused by the optical enhancement in highly doped non-active layers between the ultrathin solar cell and backside light trapping structures. We model FCA based on Drude theory in a p-type AlGaAs layer behind ultrathin GaAs solar cells with a planar mirror and cylindrical gratings. Our results show that, depending on the AlGaAs thickness and doping concentration, free carriers will absorb transmitted photons and reduce the backside reflectance, degrading the current and voltage output from ideal conditions. One example shows that for a 300 nm-thick GaAs solar cell, the Ag mirror's peak reflectance decreases nearly 12% when the AlGaAs back layer is 800 nm-thick at a doping concentration of 4x1019 cm−3. Notably, the cylindrical grating designs with 38.5%, 46.5%, and 64.9% AlGaAs coverage resulted in an absolute efficiency reduction of 0.6%, 1.8%, and 2.9% at a doping concentration of 4x1019 cm−3, respectively. This novel study demonstrates that FCA in non-active layers must be properly addressed in the device design to progress the efficiency of ultrathin III-V solar cells with light trapping structures.

Funder

Air Force Research Laboratory

BlueHalo

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3