Modeling selective narrowband light absorption in coaxial InAs-GaAs0.1Sb0.9 nanowires with partial shell segment coverage

Author:

Abrand AlirezaORCID,Anttu NicklasORCID,Mohseni Parsian KORCID

Abstract

Abstract Vertical III-V nanowire (NW) arrays are promising candidates for infrared (IR) photodetection applications. Generally, NWs with large diameters are required for efficient absorption in the IR range. However, increasing the NW diameter results in a loss of spectral selectivity and an enhancement in the photodetector dark current. Here, we propose a nanophotonic engineering approach to achieving spectrally-selective light absorption while minimizing the volume of the absorbing medium. Based on simulations performed using rigorous coupled-wave analysis (RCWA) techniques, we demonstrate dramatic tunability of the short-wavelength infrared (SWIR) light absorption properties of InAs NWs with base segments embedded in a reflective backside Au layer and with partial GaAs0.1Sb0.9 shell segment coverage. Use of a backside reflector results in the generation of a delocalized evanescent field around the NW core segment that can be selectively captured by the partially encapsulating GaAs0.1Sb0.9 shell layer. By adjusting the core and shell dimensions, unity absorption can be selectively achieved in the 2 to 3 μm wavelength range. Due to the transparency of the GaAs0.1Sb0.9 shell segments, wavelength-selective absorption occurs only along the InAs core segments where they are partially encapsulated. The design presented in this work paves the path toward spectrally-selective and polarization-dependent NW array-based photodetectors, in which carrier collection efficiencies can be enhanced by positioning active junctions at the predefined locations of the partial shell segments.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3