Guided-mode resonance sensors: different schemes for different applications

Author:

Maleki Morteza1ORCID,Mehran Mahdiyeh1ORCID

Affiliation:

1. Shahid Bahonar University of Kerman

Abstract

This work performs a quantitative comparison of different dielectric-based guided-mode resonance (D-GMR) sensors. To this end, diverse D-GMR structures are classified into three different classes, and their sensitivity (S) is compared to each other. For one of these classes in various schemes, the sensitivity is investigated for the TE and TM modes. Moreover, grating height effects are studied for different cases in this category, and analytical sensitivity equations are used as benchmarks. Then, the three classes are compared and, based on the numerical results and analytical equations, various applications are proposed for different structures in the refractive index (RI) of interest. Comparing our results to other recent works, we prove that the proposed classification leads to great sensing performances and the predictions are reliable. A comparison has been performed for methane as a gas sample (with RI of 1.0003) and a hemoglobin solution and toluene as two different analytes (with RIs of 1.33 and 1.4778, respectively). The results show a sensitivity of S = 1427.3 n m / r e f r a c t i v e index unit (nm/RIU) for methane with a detection precision of one to a few volume percentages in the air, which can also be calibrated to illuminate the fabrication variation errors. For hemoglobin, a sensitivity of 1073.4 nm/RIU is obtained, with a limit of detection of 116.15 mg/lit for 65-87 g/lit of hemoglobin in water; for the toluene sensor, S = 1019.7 n m / R I U is calculated. As a general result, a high figure of merit/sensitivity can be achieved over a wide range of applications, from gases to high RI analytes, using our proposed classifications.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3