Exploiting Thin-Film Properties and Guided-Mode Resonance for Designing Ultrahigh-Figure-of-Merit Refractive Index Sensors

Author:

Cu Duy Thanh1,Wu Hong-Wei1,Chen Hung-Pin2ORCID,Su Li-Chen34,Kuo Chien-Cheng1

Affiliation:

1. Thin Film Technology Center, Department of Optics and Photonics, National Central University, 300, Chung Da Rd., Chung Li, Taoyuan 32001, Taiwan

2. National Applied Research Laboratories, Taiwan Instrument Research Institute, No. 20. R&D Rd. VI, Hsinchu Science Park, Hsinchu 30076, Taiwan

3. General Education Center, Ming Chi University of Technology, New Taipei 243303, Taiwan

4. Organic Electronics Research Center, Ming Chi University of Technology, New Taipei 243303, Taiwan

Abstract

Guided-mode resonance (GMR) gratings have emerged as a promising sensing technology, with a growing number of applications in diverse fields. This study aimed to identify the optimal design parameters of a simple-to-fabricate and high-performance one-dimensional GMR grating. The structural parameters of the GMR grating were optimized, and a high-refractive-index thin film was simulated on the grating surface, resulting in efficient confinement of the electric field energy within the waveguide. Numerical simulations demonstrated that the optimized GMR grating exhibited remarkable sensitivity (252 nm/RIU) and an extremely narrow full width at half maximum (2 × 10−4 nm), resulting in an ultra-high figure of merit (839,666) at an incident angle of 50°. This performance is several orders of magnitude higher than that of conventional GMR sensors. To broaden the scope of the study and to make it more relevant to practical applications, simulations were also conducted at incident angles of 60° and 70°. This holistic approach sought to develop a comprehensive understanding of the performance of the GMR-based sensor under diverse operational conditions.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3