Introduction to theory of high-harmonic generation in solids: tutorial

Author:

Yue Lun1ORCID,Gaarde Mette B.1

Affiliation:

1. Louisiana State University

Abstract

High-harmonic generation (HHG) in solids has emerged in recent years as a rapidly expanding and interdisciplinary field, attracting attention from both the condensed-matter and the atomic, molecular, and optics communities. It has exciting prospects for the engineering of new light sources and the probing of ultrafast carrier dynamics in solids, and the theoretical understanding of this process is of fundamental importance. This tutorial provides a hands-on introduction to the theoretical description of the strong-field laser–matter interactions in a condensed-phase system that give rise to HHG. We provide an overview ranging from a detailed description of different approaches to calculating the microscopic dynamics and how these are intricately connected to the description of the crystal structure, through the conceptual understanding of HHG in solids as supported by the semiclassical recollision model. Finally, we offer a brief description of how to calculate the macroscopic response. We also give a general introduction to the Berry phase, and we discuss important subtleties in the modeling of HHG, such as the choice of structure and laser gauges, and the construction of a smooth and periodic structure gauge for both nondegenerate and degenerate bands. The advantages and drawbacks of different structure and laser-gauge choices are discussed, both in terms of their ability to address specific questions and in terms of their numerical feasibility.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3