Enhanced high harmonic efficiency through phonon-assisted photodoping effect

Author:

Zhang JinORCID,Neufeld Ofer,Tancogne-Dejean NicolasORCID,Lu I-Te,Hübener HannesORCID,De Giovannini Umberto,Rubio AngelORCID

Abstract

AbstractHigh-harmonic generation (HHG) has emerged as a central technique in attosecond science and strong-field physics, providing a tool for investigating ultrafast dynamics. However, the microscopic mechanism of HHG in solids is still under debate, and it is unclear how it is modified in the ubiquitous presence of phonons. Here we theoretically investigate the role of collectively coherent vibrations in HHG in a wide range of solids (e.g., hBN, graphite, 2H-MoS2, and diamond). We predict that phonon-assisted high harmonic yields can be significantly enhanced, compared to the phonon-free case – up to a factor of ~20 for a transverse optical phonon in bulk hBN. We also show that the emitted harmonics strongly depend on the character of the pumped vibrational modes. Through state-of-the-art ab initio calculations, we elucidate the physical origin of the HHG yield enhancement – phonon-assisted photoinduced carrier doping, which plays a paramount role in both intraband and interband electron dynamics. Our research illuminates a clear pathway toward comprehending phonon-mediated nonlinear optical processes within materials, offering a powerful tool to deliberately engineer and govern solid-state high harmonics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3