Affiliation:
1. Fudan University
2. Nanjing University of Posts and Telecommunications
3. University of Alabama in Huntsville
Abstract
Hybrid metal-dielectric guided mode resonance devices have an advantage over the all-dielectric guided mode resonance device for having a thin metal grating conductive layer that can be used as an electrode for tunable applications. In this work, we investigate the coupling between the waveguide mode and surface plasmons of the gold nanoslits grating in the hybrid guided mode resonance filter. It is shown that the coupling between the waveguide mode and surface plasmons can be engineered by increasing either the thickness of the low index of the refraction spacing layer or the thickness of the high index of the refraction waveguide layer. Therefore, a narrow spectral linewidth and a high finesse of hybrid guided mode resonance filters can be obtained by increasing the thickness of the low index of the refraction spacing layer or the thickness of the high index of the refraction waveguide layer. A hybrid guided mode resonance transmission filter with a narrow spectral linewidth of 2.8 nm is designed at the 1660.2 nm center wavelength.
Funder
Yiwu Research Institute of Fudan University Fund
Fudan University-Changguang Research Fund
Fudan University-Yanchang Petroleum Research Fund
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献