Affiliation:
1. KIST School at University of Science and Technology
2. Electronics and Telecommunications Research Institute
Abstract
2 µm photonics and optoelectronics is promising for potential applications such as optical communications, LiDAR, and chemical sensing. While the research on 2 µm detectors is on the rise, the development of InP-based 2 µm gain materials with 0D nanostructures is rather stalled. Here, we demonstrate low-threshold, continuous wave lasing at 2 µm wavelength from InAs quantum dash/InP lasers enabled by punctuated growth of the quantum structure. We demonstrate low threshold current densities from the 7.1 µm width ridge-waveguide lasers, with values of 657, 1183, and 1944 A/cm2 under short pulse wave (SPW), quasi-continuous wave (QCW), and continuous wave operation. The lasers also exhibited good thermal stability, with a characteristic temperature T0 of 43 K under SPW mode. The lasing spectra is centered at 1.97 µm, coinciding with the ground-state emission observed from photoluminescence studies. We believe that the InAs quantum dash/InP lasers emitting near 2 µm will be a key enabling technology for 2 µm communication and sensing.
Funder
National Research Foundation of Korea
Korea Institute of Science and Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. InAs quantum dash lasers for 2-μm photonics;Novel In-Plane Semiconductor Lasers XXIII;2024-03-13