Monolithic integrated MQW-based optoelectronic glucose sensor

Author:

Gao Xumin,Li Tai,Wu Dongmei,Zhu Fujun,Xie Mingyuan,Wang YongjinORCID,Shi Zheng

Abstract

This study presents the development process of a multi-quantum well (MQW)-based optoelectronic integrated device designed for precise glucose concentration measurements. The proposed monolithic device consists of two identical diodes containing InGaN/GaN MQWs, serving as a light emitter (LED) and a photodetector (PD), respectively. The chip is meticulously packaged with polydimethylsiloxane (PDMS) to facilitate exposure to the glucose solution. By monitoring changes in the photocurrent of the PD that detects scattered light of the LED propagating through the sapphire substrate, the chip can accurately reflect alterations in the glucose solution’s concentration. The device’s uniqueness lies in its ability to achieve this precision without the need for external optical components. The device exhibits a fast response, operating at a sub-second level, and can gauge glucose solutions with concentrations ranging from 5% to 40%. The fabricated optical sensing device showcases appealing characteristics, including compactness, stability, repeatability, and rapid response, making it highly suitable for glucose concentration measurement applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

111 Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3