Angular error measurement of workpiece repositioning using a full-scale rotation detection method

Author:

Zhu Zijian,Zhao ChenyangORCID

Abstract

Workpiece repositioning error has always been a key factor affecting manufacturing accuracy. The issues become more sensitive when machining microstructures with special morphologies, where the declination error caused by the repositioning may lead to microstructural defects. To solve this practical problem, in this paper, we report the design of a fixture that can detect the plane angular displacement error between the workpiece and the tool, namely the Rotation Correction Fixture (RCF). The fiducial marker referred to as polar microstructure is proposed and placed on the RCF edge. Angular displacement measurement is realized by observing the microstructural changes. Simultaneously, a Full-scale Rotation Detection (FRD) method is proposed to obtain the full-scale and high-precision angular displacement, including coarse extraction based on Fourier transform and fine extraction based on the Fast and Robust Feature-based Positioning method. Template matching is employed to eliminate the phase ambiguity in the Fourier transform. The results show that the proposed method can realize the calibration of the workpiece declination with a standard deviation error of 250.24 seconds, which meets the needs of workpiece precision positioning well.

Funder

National Natural Science Foundation of China

CGN-HIT Advanced Nuclear and New Energy Research Institute

Young Elite Scientist Sponsorship Program By CAST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3