Image dehazing algorithm based on optimized dark channel and haze-line priors of adaptive sky segmentation

Author:

Cui Guangmang1ORCID,Ma Qiong,Zhao Jufeng1ORCID,Yang Shunjie,Chen Ziyi

Affiliation:

1. Hangzhou Dianzi University

Abstract

When dealing with outdoor hazy images, traditional image dehazing algorithms are often affected by the sky regions, resulting in appearing color distortions and detail loss in the restored image. Therefore, we proposed an optimized dark channel and haze-line priors method based on adaptive sky segmentation to improve the quality of dehazed images including sky areas. The proposed algorithm segmented the sky region of a hazy image by using the Gaussian fitting curve and prior information of sky color rules to calculate the adaptive threshold. Then, an optimized dark channel prior method was used to obtain the light distribution image of the sky region, and the haze-line prior method was utilized to calculate the transmission of the foreground region. Finally, a minimization function was designed to optimize the transmission, and the dehazed images were restored with the atmospheric scattering model. Experimental results demonstrated that the presented dehazing framework could preserve more details of the sky area as well as restore the color constancy of the image with better visual effects. Compared with other algorithms, the results of the proposed algorithm could achieve higher peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) evaluation values and provide the restored image with subjective visual effects closer to the real scene.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Department of Education of Zhejiang Province

Graduate Scientific Research Foundation of Hangzhou Dianzi University

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3