Image dehazing combining polarization properties and deep learning

Author:

Suo Ke1ORCID,Lv Yaowen1ORCID,Yin Jiachao1,Yang Yang1,Huang Xi1

Affiliation:

1. Changchun University of Science and Technology

Abstract

In order to solve the problems of color shift and incomplete dehazing after image dehazing, this paper proposes an improved image self-supervised learning dehazing algorithm that combines polarization characteristics and deep learning. First, based on the YOLY network framework, a multiscale module and an attention mechanism module are introduced into the transmission feature estimation network. This enables the extraction of feature information at different scales and allocation of weights, and effectively improves the accuracy of transmission map estimation. Second, a brightness consistency loss based on the YCbCr color space and a color consistency loss are proposed to constrain the brightness and color consistency of the dehazing results, resolving the problems of darkened brightness and color shifts in dehazed images. Finally, the network is trained to dehaze polarized images based on the atmospheric scattering model and loss function constraints. Experiments are conducted on synthetic and real-world data, and comparisons are made with six contrasting dehazing algorithms. The results demonstrate that, compared to the contrastive dehazing algorithms, the proposed algorithm achieves PSNR and SSIM values of 23.92 and 0.94, respectively, on synthetic image samples. For real-world image samples, color restoration is more authentic, contrast is higher, and detailed information is richer. Both subjective and objective evaluations show significant improvements. This validates the effectiveness and superiority of the proposed dehazing algorithm.

Funder

Jilin Provincial Department of Science and Technology General Program

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3