OFDR analysis of Si photonics FMCW LiDAR chip

Author:

Kamata MikiyaORCID,Baba ToshihikoORCID

Abstract

We experimentally analyzed the internal reflection and loss of each component in a Si photonics frequency-modulated continuous-wave light detection and ranging (FMCW LiDAR) device using optical frequency domain reflectometry (OFDR) with a spatial resolution of better than 2.5 µm. Sweeping the incident laser wavelength by 120 nm, the reflections and losses of wire waveguides, widened waveguides, and optical switches on the chip were individually revealed. The slow-light grating (SLG) beam scanner, which has a limited working wavelength range, was evaluated with a spatial resolution of >10 µm by narrowing the wavelength sweep range. Consequently, a strong reflection was observed at the transition between the wire waveguide and the SLG, which can be a noise source in the FMCW LiDAR. Additionally, this study showed that the OFDR can be an important analysis tool for Si photonics integrated circuits. To our knowledge, this is the first demonstration, showing that the OFDR can be an important analysis tool for Si photonic integrated circuits.

Funder

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3