Affiliation:
1. CNRS-Université de Montpellier
Abstract
Beginning with Fermat’s principle, we provide a detailed derivation of the generalized laws of refraction and reflection for a geometry realizing a metasurface. We first solve the Euler–Lagrange equations for a light ray propagating across the metasurface. The ray-path equation is found analytically, and the results are supported by numerical calculations. We get generalized laws of refraction and reflection that have three main features: (i) They are relevant in gradient-index optics and in geometrical optics; (ii) A collection of rays emerges from the metasurface as a result of multiple reflections inside the metasurface; and (iii) The laws, although derived from Fermat’s principle, differ from previously published results.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献