PA-NeRF, a neural radiance field model for 3D photoacoustic tomography reconstruction from limited Bscan data

Author:

Zou Yun1,Lin Yixiao1,Zhu Quing12ORCID

Affiliation:

1. Washington University in St. Louis

2. Washington University in St. Louis School of Medicine

Abstract

We introduce a novel deep-learning-based photoacoustic tomography method called Photoacoustic Tomography Neural Radiance Field (PA-NeRF) for reconstructing 3D volumetric PAT images from limited 2D Bscan data. In conventional 3D volumetric imaging, a 3D reconstruction requires transducer element data obtained from all directions. Our model employs a NeRF-based PAT 3D reconstruction method, which learns the relationship between transducer element positions and the corresponding 3D imaging. Compared with convolution-based deep-learning models, such as Unet and TransUnet, PA-NeRF does not learn the interpolation process but rather gains insight from 3D photoacoustic imaging principles. Additionally, we introduce a forward loss that improves the reconstruction quality. Both simulation and phantom studies validate the performance of PA-NeRF. Further, we apply the PA-NeRF model to clinical examples to demonstrate its feasibility. To the best of our knowledge, PA-NeRF is the first method in photoacoustic tomography to successfully reconstruct a 3D volume from sparse Bscan data.

Funder

National Cancer Institute

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3