Affiliation:
1. Shanghai Normal University
2. Tokyo University of Science
3. Guangdong Polytechnic Normal University
4. University of Shanghai for Science and Technology
5. Nagoya University
6. Nagoya Institute of Technology
Abstract
Resonances with both high-quality factor and polarization-independent characteristics are highly desirable for terahertz (THz) sensing. Here, THz sensors based on asymmetric metallic hole arrays (AMHAs) are experimentally demonstrated. Such sensors consisting of four-hole arrays support polarization-independent quasi-bound states in the continuum (BICs). The induced quasi-BIC presents a quality factor exceeding 2000, which enables enhanced sensing for thin membranes. Results show that the frequency shift is 97.5 GHz for the 25-µm thick polyimide (PI), corresponding to a sensitivity of 147.7 GHz/RIU. The sensing performance strongly relates to the enhanced field originating from sharp quasi-BICs. A maximum field enhancement of 15.88 in contrast to the incident field is achieved. When the PI thickness is large than the decay length of enhanced fields, the interaction strength of field-PI becomes weak, resulting in a saturation effect for the shift of quasi-BICs. The proposed sensor possessing polarization-independent quasi-BICs has great potential for practical sensing applications in real-time chemical and biomolecular.
Funder
National Natural Science Foundation of China
Shanghai Pujiang Program
Science and Technology Commission of Shanghai Municipality
Shanghai Municipal Education Commission
Program of Shanghai Academic Research Leader
Hirose Foundation
Amada Foundation
Iketani Science and Technology Foundation
KAKENHI
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献