Single-/fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions

Author:

Zhang Shuo1,Mu Ge1,Cao Jie12,Luo Yuning1,Hao Qun12,Chen Menglu12ORCID,Tan Yimei1,Zhao Pengfei1,Tang Xin12

Affiliation:

1. Beijing Institute of Technology

2. Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology

Abstract

Image data acquired with fused multispectral information can be used for effective identification and navigation owing to additional information beyond human vision, including thermal distribution, night vision, and molecular composition. However, the construction of photodetectors with such capabilities is hindered by the structural complexity arising from the integration of multiple semiconductor junctions with distinct energy gaps and lattice constants. In this work, we develop a colloidal quantum-dot dual-mode detector capable of detecting, separating, and fusing photons from various wavelength ranges. Using three vertically stacked colloidal quantum-dot homojunctions with alternating polarity, single-band short-wave infrared imaging and fused-band imaging (short-wave and mid-wave infrared) can be achieved with the same detector by controlling bias polarity and magnitude. The dual-mode detectors show detectivity up to 8 × 10 10 Jones at the fused-band mode and 3.1 × 10 11 Jones at the single-band mode, respectively. Without image post-processing algorithms, the dual-mode detectors could provide both night vision and thermal information-enhanced night vision imaging capability. To the best of our knowledge, this is the first colloidal quantum-dot detector that can achieve such functionality. The operation mode can be changed at a high frequency up to 1.7 MHz, making it possible to achieve simultaneously dual-mode imaging and remote temperature sensing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3