Coupling Ferroelectric to colloidal Nanocrystals as a Generic Strategy to Engineer the Carrier Density Landscape

Author:

Cavallo Mariarosa1ORCID,Bossavit Erwan12ORCID,Matzen Sylvia3ORCID,Maroutian Thomas3ORCID,Alchaar Rodolphe1ORCID,Dang Tung Huu1ORCID,Khalili Adrien1ORCID,Dabard Corentin1ORCID,Zhang Huichen1ORCID,Prado Yoann1ORCID,Abadie Claire1ORCID,Utterback James K1ORCID,Dayen Jean Francois45ORCID,Silly Mathieu G.2ORCID,Dudin Pavel2ORCID,Avila Jose2ORCID,Lhuillier Emmanuel1ORCID,Pierucci Debora1ORCID

Affiliation:

1. Sorbonne Université CNRS Institut des NanoSciences de Paris INSP F‐75005 Paris France

2. Synchrotron SOLEIL L'Orme des Merisiers Départementale 128 91190 Saint‐Aubin France

3. Centre de Nanosciences et de Nanotechnologies CNRS Université Paris‐Saclay 10 boulevard Thomas Gobert 91120 Palaiseau France

4. Université de Strasbourg IPCMS‐CNRS UMR 7504 23 Rue du Loess 67034 Strasbourg France

5. Institut Universitaire de France 1 rue Descartes 75231 Paris Cedex 05 France

Abstract

AbstractThe design of infrared nanocrystals‐based (NCs) photodiodes faces a major challenge related to the identification of barriers with a well‐suited band alignment or strategy to finely control the carrier density. Here, this study explores a general complementary approach where the carrier density control is achieved by coupling an NC layer to a ferroelectric material. The up‐and‐down change in ferroelectric polarization directly impacts the NC electronic structure, resulting in the formation of a lateral pn junction. This effect is uncovered directly using nano X‐ray photoemission spectroscopy, which shows a relative energy shift of 115 meV of the NC photoemission signal over the two different up‐ and down‐polarized ferroelectric regions, a shift as large as the open circuit value obtained in the diode stack. The performance of this pn junction reveals enhanced responsivity and reduced noise that lead to a factor 40 increase in the detectivity value.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3