Affiliation:
1. Nanjing University
2. Sun Yat-sen University
3. University of Arkansas
Abstract
High-dimensional maximally entangled orbital angular momentum (OAM) states are a promising resource for enhancing information capacity and robustness in quantum communication. However, it still lacks an effective method to increase the state dimensionality. Here, we theoretically propose an efficient scheme to generate maximally entangled OAM states of ultrahigh dimensionality by manipulating the radial components of a Laguerre-Gaussian (LG) pump beam. By optimizing the complex amplitudes of multiple radial modes of the LG pump light, one can feasibly achieve 101-dimensional OAM-based maximally entangled states. Our scheme has potential applications in high capacity quantum communication networks.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献