Interpulse stimulation Fourier-transform coherent anti-Stokes Raman spectroscopy

Author:

Lu Minjian,Zhang YujiaORCID,Chen Xinyi,Li Yan,Wei Haoyun

Abstract

Exploiting the time-resolving ability of ultrafast pulses, Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) stands out among the coherent Raman spectroscopic techniques for providing high-speed vibrational spectra with high spectral resolution, high Raman intensity, and immunity to nonresonant background. However, the impulsive stimulation nature of FT-CARS imposes heavy demands on the laser source and makes it inherently difficult to monitor high-frequency vibrations. Here, a novel FT-CARS strategy to our knowledge based on interpulse stimulation is proposed to provide more flexible measuring wavenumber region and lighten the requirement on ultrafast pulses. The mechanism of this technique is analyzed theoretically, and simulation is performed to show an orders-of-magnitude improvement of Raman intensity in the high-wavenumber region by the method. Experimentally, an ytterbium-doped fiber laser and photonic crystal fiber-based solitons are employed to provide two 100 - fs pulses as the pump and Stokes, respectively, and to perform interpulse stimulation FT-CARS without sophisticated dispersion control devices. The high-wavenumber region and upper-part fingerprint region measurements are demonstrated as examples of flexible measurement. Combined with other rapid scanning techniques, such as resonant scanners or a dual-comb scheme, this interpulse stimulation FT-CARS promises to make the fascinating FT-CARS available for any desired wavenumber region, covering many more realistic scenarios for biomedical, pathological, and environmental research.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3