Time-domain fit for improved contrast in quantitative coherent anti-Stokes Raman spectroscopy

Author:

Lu Minjian,Zhang YujiaORCID,Li JiaruiORCID,Li Yan,Wei Haoyun

Abstract

Among the multiple coherent anti-Stokes Raman scattering (CARS) techniques that provide important quantitative molecular microscopic contrast, Fourier-transform CARS (FT-CARS) stands out with the immunity to nonresonant background and high-speed detection capacity. However, by using FFT for the exponentially decaying signal, FT-CARS faces the dilemma of choosing the delay range of the signal for high SNR or high resolution, the lack of either of which is detrimental to the quantitative contrast of imaging. Here, time-domain fit (TDF) is proposed to fully utilize the time-domain information of FT-CARS, providing optimized SNR and vibrational feature distinguishment. The capacity of noise restriction and feature distinguishment of the traditional FFT and the proposed TDF is analysed with theoretical examination and simulation. Exploiting the matrix pencil extraction of vibrational parameters, TDF is performed for quantitative analysis for simulated FT-CARS signal, and shows more accurate and consistent performance than the FFT method. FT-CARS coupled with TDF intensity evaluation holds the promise to provide micro-spectroscopic contrast with higher SNR and free of spectral overlapping, contributing to a more powerful diagnostic tool.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3