SiN foundry platform for high performance visible light integrated photonics

Author:

Smith Jack A.,Francis Henry1,Navickaite Gabriele1,Strain Michael J.ORCID

Affiliation:

1. LIGENTEC

Abstract

We present a high performance silicon nitride photonic integrated circuit platform operating at visible wavelengths, accessible through the commercial foundry, LIGENTEC. Propagation losses were measured across the visible spectrum from 450 nm to 850 nm. For wavelengths above 630 nm, losses were <1 dB/cm in TE and <0.5 dB/cm in TM. Additionally, sets of single mode waveguide-coupled ring resonators across three separate chips were tested and analysed. A peak intrinsic Q factor of 3.69 × 106 was measured for a single resonance at ∼635.3 nm, with an average value of 2.28 × 106 recorded over 10 peaks in a 3 nm tuning range. Analyses of the loss and coupling, as functions of bus-ring coupling gap and waveguide width, are also presented. High confinement, low loss devices realised on the chip-scale in a wide-bandgap material like silicon nitride are increasingly important for the next generation of integrated optical devices operating at visible wavelengths.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Innovate UK

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3