Two-axis MEMS positioner for waveguide alignment in silicon nitride photonic integrated circuits

Author:

Rabih Almur A. S.1ORCID,Sharma Suraj1,Pita Julian1ORCID,Ménard Michaël1ORCID,Nabki Frederic1

Affiliation:

1. École de Technologie Supérieure

Abstract

Alignment is critical for efficient integration of photonic integrated circuits (PICs), and microelectromechanical systems (MEMS) actuators have shown potential to tackle this issue. In this work, we report MEMS positioning actuators designed with the ultimate goal of aligning silicon nitride (SiN) waveguides either to different outputs within a SiN chip or to active chips, such as lasers and semiconductor optical amplifiers. For the proof-of-concept, suspended SiN waveguides implemented on a silicon-on-insulator wafer were displaced horizontally in the direction of light propagation to close an initial gap of 6.92 µm and couple the light to fixed output waveguides located on a static section of the chip. With the gap closed, the suspended waveguides showed ∼ 345 nm out-of-plane misalignment with respect to the fixed waveguides. The suspended waveguides can be displaced laterally by more than ±2 µm. When the waveguides are aligned and the gap closed, an average loss of −1.6 ± 0.06 dB was achieved, whereas when the gap is closed with a ± 2 µm lateral displacement, a maximum average loss of ∼ −19.00 ± 0.62 dB was obtained. The performance of this positioner does not only pave the way for active chip alignment, but it could also be considered for optical switching applications.

Funder

AEPONYX inc

PRIMA Quebec

Natural Sciences and Engineering Research Council of Canada

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 3 Degrees-of-Freedom Electrothermal Micro-Positioner for Optical Chip-to-Chip Alignment;Journal of Microelectromechanical Systems;2024-04

2. 1 x 5 MEMS Mode Selective Switch with an Inverse-Designed Silicon Nitride MDM;Optical Fiber Communication Conference (OFC) 2024;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3