Three-dimensional measurement method based on a three-step phase-shifting fringe and a binary fringe

Author:

Wang Lin1,Wang Wei1,Wang Xiaofang2,Wang Xiangjun1

Affiliation:

1. Tianjin University

2. Unit 32382 of PLA

Abstract

Gray-code plus phase-shifting is currently a commonly used method for structured light three-dimensional (3D) measurement that is able to measure complex surfaces. However, the Gray-code fringe patterns tend to be complicated, making the measurement process time-consuming. To solve this problem and to obtain faster speed without sacrificing accuracy, a 3D measurement method based on three-step phase-shifting and a binary fringe is proposed; the method contains three phase-shifting fringe patterns and an additional binary fringe pattern. The period of the binary fringe is designed to be the same as the three-step phase-shifting fringe. Because of the specific pattern design strategy, the three-step phase-shifting algorithm is used to obtain the wrapped phase, and the connected region labeling theorem is used to calculate the fringe order. A theoretical analysis, simulation, and experiments validate the efficiency and robustness of the proposed method. It can achieve high-precision 3D measurement, which performs almost the same as the Gray-code plus phase-shifting method. Since only one additional binary fringe pattern is required, it has the potential to achieve higher measurement speed.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3