Adaptive methods of generating complex light arrays

Author:

Wang TianhongORCID,Tran VietORCID,Bassène Pascal,Fohtung Edwin1ORCID,Rhone Trevor,N’Gom Moussa2ORCID

Affiliation:

1. Rensselaer Polytechnic Institute

2. University of Michigan

Abstract

Structured light arrays of various shapes have been a cornerstone in optical science, driven by the complexities of precise and adaptable generation. This study introduces an approach using a spatial light modulator (SLM) as a generator for these arrays. By projecting a holographic mask onto the SLM, it functions simultaneously as an optical convolution device, focusing mechanism, and structured light beam mask. Our approach offers unmatched versatility, allowing for the experimental fabrication of traditional beam arrays like azimuthal Laguerre–Gaussian (LG), Bessel–Gaussian (BG), and Hermite–Gauss (HG) in the far-field. Notably, it has enabled a method of generating Ince–Gauss (IG) and LG radial mode beam arrays using a convolution solution. Our system provides exceptional control over array periodicity and intensity distribution, bypassing the Talbot self-imaging phenomenon seen in traditional setups. We provide an in-depth theoretical discussion, supported by empirical evidence, of our far-field results. This method has vast potential for applications in optical communication, data processing, and multi-particle manipulation. It paves the way for rapid generation of structured light with high spatial frequencies and complex shapes, promising transformative advances in these domains.

Funder

U.S. Department of Defense

Air Force Research Laboratory

U.S. Department of Energy

Office of Science

American Society for Cell Biology

National Geospatial-Intelligence Agency

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3