Coherent diffractive imaging with twisted X-rays: Principles, applications, and outlook

Author:

Nazirkar Nimish P.1ORCID,Shi Xiaowen1ORCID,Shi Jian12ORCID,N'Gom Moussa2ORCID,Fohtung Edwin123ORCID

Affiliation:

1. Rensselaer Polytechnic Institute, Department of Materials Science and Engineering 1 , 110 8th Street, Troy, New York 12180, USA

2. Rensselaer Polytechnic Institute, Department of Physics, Applied Physics, and Astronomy 2 , 110 8th Street, Troy, New York 12180, USA

3. Center for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute 3 , Troy, New York 12180, USA

Abstract

Recent technological breakthroughs in synchrotron and x-ray free electron laser facilities have revolutionized nanoscale structural and dynamic analyses in condensed matter systems. This review provides a comprehensive overview of the advancements in coherent scattering and diffractive imaging techniques, which are now at the forefront of exploring materials science complexities. These techniques, notably Bragg coherent diffractive imaging and x-ray photon correlation spectroscopy, x-ray magnetic dichroism, and x-ray correlation analysis leverage beam coherence to achieve volumetric three-dimensional imaging at unprecedented sub-nanometer resolutions and explore dynamic phenomena within sub-millisecond timeframes. Such capabilities are critical in understanding and developing advanced materials and technologies. Simultaneously, the emergence of chiral crystals—characterized by their unique absence of standard inversion, mirror, or other roto-inversion symmetries—presents both challenges and opportunities. These materials exhibit distinctive interactions with light, leading to phenomena such as molecular optical activity, chiral photonic waveguides, and valley-specific light emissions, which are pivotal in the burgeoning fields of photonic and spintronic devices. This review elucidates how novel x-ray probes can be leveraged to unravel these properties and their implications for future technological applications. A significant focus of this review is the exploration of new avenues in research, particularly the shift from conventional methods to more innovative approaches in studying these chiral materials. Inspired by structured optical beams, the potential of coherent scattering techniques utilizing twisted x-ray beams is examined. This promising direction not only offers higher spatial resolution but also opens the door to previously unattainable insights in materials science. By contextualizing these advancements within the broader scientific landscape and highlighting their practical applications, this review aims to chart a course for future research in this rapidly evolving field.

Funder

Office of Science

Air Force Office of Scientific Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3