Deciphering the vibronic lasing performances in an electron-phonon-photon coupling system

Author:

Miao Rulin,Fu Yu,Lu DazhiORCID,Liang Fei,Yu HaohaiORCID,Zhang Huaijin,Wu Yicheng1

Affiliation:

1. Tianjin University of Technology

Abstract

Coupling between electronic motions and the lattice vibrations, phonons could broaden the spectral bandwidth of the fluorescence spectroscopy by the energy transferring, which was recognized from the beginning of last century and successfully applied in many vibronic lasers. However, the laser performances under electron-phonon coupling were mainly prejudged by the experimental spectroscopy. The multiphonon participated lasing mechanism is still elusive and should be in-depth investigated. Here, a direct quantitative relationship between the laser performance and phonon participating dynamic process was derived in theory. With a transition metal doped alexandrite (Cr3+:BeAl2O4) crystal, the multiphonon coupled laser performance was manifested in experiments. Associated with the Huang-Rhys factor calculations and hypothesis, the multiphonon participated lasing mechanism with phonon numbers from 2 to 5 was discovered and identified. This work provides not only a credible model for understanding the multiphonon participated lasing, but should also boost the study of laser physics in the electron-phonon-photon coupled systems.

Funder

Future Plans of Young Scholars at Shandong University

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear optovibronics in molecular systems;Physical Review A;2024-02-20

2. Photon-phonon collaboratively pumped laser;Nature Communications;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3