Theory of light absorption and non-radiative transitions in F -centres

Author:

Abstract

A quantitative theory for the shapes of the absorption bands of F -centres is given on the basis of the Franck-Condon principle. Underlying the treatment are two simplifying assumptions: namely, ( a ) that the lattice can be approximately treated as a dielectric continuum; ( b ) that in obtaining the vibrational wave functions for the lattice, the effect of the F -centre can be considered as that of a static charge distribution. Under these assumptions, it is shown that the absorption constant as a function of frequency and temperature can be expressed in terms of the Bessel functions with imaginary arguments. The theoretical curves for the absorption constant compare very favourably with the experimental curves for all temperatures. Also considered in the paper are the probabilities of non-radiative transitions, which are important in connexion with the photo-conductivity observed following light absorption by F -centres. The treatment given differs from the qualitative considerations hitherto in one important aspect, namely, the strength of the coupling between the electron and the lattice is taken into account. The adiabatic wave functions for the F -centre electron required for the discussion are obtained by perturbation methods. The probability for an excited F -centre to return to its ground state by non-radiative transitions is shown to be negligible; similar transitions to the conduction band are, however, important if the excited state is separated from the conduction band by not much more than 0·1 eV. The temperature dependence of such transitions is complicated, but, for a wide range of temperatures, resembles e - w/k T . Tentative estimates show that the result is Consistent with the observed steep drop of the photo-conductive current with temperature.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference17 articles.

1. Condon E. U. & Morse P. M. 1929 Quantum mechanics. New York: McGraw-Hill.

2. Finkelnburg W. 1938

3. Frenkel J. 1936 Phys.

4. Kontinuierliche Spektren.Berlin: Springer. Z .Sowjet. 9 158.

5. Conduction in polar crystals. III. On the colour centres in alkali-halide crystals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3