Noise-resilient deep learning for integrated circuit tomography

Author:

Guo ZhenORCID,Liu Zhiguang,Barbastathis George1,Zhang Qihang,Glinsky Michael E.2,Alpert Bradley K.3,Levine Zachary H.3ORCID

Affiliation:

1. Singapore-MIT Alliance for Research and Technology (SMART) Centre

2. qiTech Consulting

3. National Institute of Standards and Technology

Abstract

X-ray tomography is a non-destructive imaging technique that reveals the interior of an object from its projections at different angles. Under sparse-view and low-photon sampling, regularization priors are required to retrieve a high-fidelity reconstruction. Recently, deep learning has been used in X-ray tomography. The prior learned from training data replaces the general-purpose priors in iterative algorithms, achieving high-quality reconstructions with a neural network. Previous studies typically assume the noise statistics of test data are acquired a priori from training data, leaving the network susceptible to a change in the noise characteristics under practical imaging conditions. In this work, we propose a noise-resilient deep-reconstruction algorithm and apply it to integrated circuit tomography. By training the network with regularized reconstructions from a conventional algorithm, the learned prior shows strong noise resilience without the need for additional training with noisy examples, and allows us to obtain acceptable reconstructions with fewer photons in test data. The advantages of our framework may further enable low-photon tomographic imaging where long acquisition times limit the ability to acquire a large training set.

Funder

National Research Foundation Singapore

Intelligence Advanced Research Projects Activity

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanoscale X-Ray Tomography of Integrated Circuits Using a Hybrid Electron/X-Ray Microscope: Results and Prospects;2023 IEEE Physical Assurance and Inspection of Electronics (PAINE);2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3