Multi-target reconstruction strategy based on blind source separation of surface measurement signals in FMT

Author:

Zhang Lizhi12,Guo Hongbo12ORCID,Li Jintao12,Kang Dizhen12,Zhang Diya12,He Xiaowei12ORCID,Zhao Yizhe12,Wei De12,Yu JingjingORCID

Affiliation:

1. The Xi’an Key Laboratory of Radiomics and Intelligent Perception

2. Northwest University

Abstract

Fluorescence molecular tomography (FMT) is a promising molecular imaging technique for tumor detection in the early stage. High-precision multi-target reconstructions are necessary for quantitative analysis in practical FMT applications. The existing reconstruction methods perform well in retrieving a single fluorescent target but may fail in reconstructing a multi-target, which remains an obstacle to the wider application of FMT. In this paper, a novel multi-target reconstruction strategy based on blind source separation (BSS) of surface measurement signals was proposed, which transformed the multi-target reconstruction problem into multiple single-target reconstruction problems. Firstly, by multiple points excitation, multiple groups of superimposed measurement signals conforming to the conditions of BSS were constructed. Secondly, an efficient nonnegative least-correlated component analysis with iterative volume maximization (nLCA-IVM) algorithm was applied to construct the separation matrix, and the superimposed measurement signals were separated into the measurements of each target. Thirdly, the least squares fitting method was combined with BSS to determine the number of fluorophores indirectly. Lastly, each target was reconstructed based on the extracted surface measurement signals. Numerical simulations and in vivo experiments proved that it has the ability of multi-target resolution for FMT. The encouraging results demonstrate the significant effectiveness and potential of our method for practical FMT applications.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3