Fluorescence separation based on the spatiotemporal Gaussian mixture model for dynamic fluorescence molecular tomography

Author:

Wu Yansong1,Chen Zihao1,Guo Hongbo1,Li Jintao1,Yi Huangjian1ORCID,Yu Jingjing2ORCID,He Xuelei1,He Xiaowei1ORCID

Affiliation:

1. The Xi’an Key Laboratory of Radiomics and Intelligent Perception

2. Shaanxi Normal University

Abstract

Dynamic fluorescence molecular tomography (DFMT) is a promising imaging method that can furnish three-dimensional information regarding the absorption, distribution, and excretion of fluorescent probes in organisms. Achieving precise dynamic fluorescence images is the linchpin for realizing high-resolution, high-sensitivity, and high-precision tomography. Traditional preprocessing methods for dynamic fluorescence images often face challenges due to the non-specificity of fluorescent probes in living organisms, requiring complex imaging systems or biological interventions. These methods can result in significant processing errors, negatively impacting the imaging accuracy of DFMT. In this study, we present, a novel, to the best of our knowledge, strategy based on the spatiotemporal Gaussian mixture model (STGMM) for the processing of dynamic fluorescence images. The STGMM is primarily divided into four components: dataset construction, time domain prior information, spatial Gaussian fitting with time prior, and fluorescence separation. Numerical simulations and in vivo experimental results demonstrate that our proposed method significantly enhances image processing speed and accuracy compared to existing methods, especially when faced with fluorescence interference from other organs. Our research contributes to substantial reductions in time and processing complexity, providing robust support for dynamic imaging applications.

Funder

Scientific and Technological projects of Xi’an

Scientific and Technology New Star in Shaanxi Province of China

Natural Science Basic Research Plan in Shaanxi Province of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3