Affiliation:
1. Institute of Semiconductors
2. University of Chinese Academy of Sciences
Abstract
An asymmetric multiple quantum well (MQW) without the first quantum barrier layer is designed, and its effect on the device performance of GaN-based blue LDs has been studied experimentally and theoretically. It is found that compared with LD using symmetrical multiple quantum well, device performance is improved significantly by using asymmetric MQW, i.e. having a smaller threshold current density, a higher output optical power and a larger slope efficiency. The threshold current density decreases from 1.28 kA/cm2 to 0.86 kA/cm2, meanwhile, the optical power increases from 1.77 W to 2.52 W, and the slope efficiency increases from 1.15 W/A to 1.49 W/A. The electroluminescence characteristics below the threshold current demonstrate that asymmetric MQW is more homogeneous due to the suppressed strain and piezoelectric field. Furthermore, theoretical calculation demonstrates that the enhancement of electron injection ratio and reduction in optical loss are another reason for the improvement of device performance, which is attributed to a smaller electron potential barrier and a more concentrated optical field distribution in the asymmetric structure, respectively. The new structure design with asymmetric MQW is concise for epitaxial growth, and it would also be a good possible choice for GaN-based LDs with other lasing wavelengths.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Beijing Nova Program
Strategic Priority Research Program of Chinese Academy of Sciences
Beijing Municipal Science& Technology Commission, Zhongguancun Science Park
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献