Inverse design of spontaneous parametric downconversion for generation of high-dimensional qudits

Author:

Rozenberg Eyal1ORCID,Karnieli Aviv2,Yesharim Ofir2,Foley-Comer Joshua2,Trajtenberg-Mills Sivan23,Freedman Daniel4,Bronstein Alex M.1,Arie Ady2ORCID

Affiliation:

1. Technion

2. Tel Aviv University

3. Massachusetts Institute of Technology

4. Google Research

Abstract

Spontaneous parametric downconversion (SPDC) in quantum optics is an invaluable resource for the realization of high-dimensional qudits with spatial modes of light. One of the main open challenges is how to directly generate a desirable qudit state in the SPDC process. This problem can be addressed through advanced computational learning methods; however, due to difficulties in modeling the SPDC process by a fully differentiable algorithm, progress has been limited. Here, we overcome these limitations and introduce a physically constrained and differentiable model, validated against experimental results for shaped pump beams and structured crystals, capable of learning the relevant interaction parameters in the process. We avoid any restrictions induced by the stochastic nature of our physical model and integrate the dynamic equations governing the evolution under the SPDC Hamiltonian. We solve the inverse problem of designing a nonlinear quantum optical system that achieves the desired quantum state of downconverted photon pairs. The desired states are defined using either the second-order correlations between different spatial modes or by specifying the required density matrix. By learning nonlinear photonic crystal structures as well as different pump shapes, we successfully show how to generate maximally entangled states. Furthermore, we simulate all-optical coherent control over the generated quantum state by actively changing the profile of the pump beam. Our work can be useful for applications such as novel designs of high-dimensional quantum key distribution and quantum information processing protocols. In addition, our method can be readily applied for controlling other degrees of freedom of light in the SPDC process, such as spectral and temporal properties, and may even be used in condensed-matter systems having a similar interaction Hamiltonian.

Funder

Israel Science Foundation

Ministry of Science, Technology and Space

The Israel Innovation Authority

Tel Aviv University Center for Quantum Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3