Multi-pass cells for post-compression of ultrashort laser pulses

Author:

Viotti Anne-Lise1ORCID,Seidel Marcus,Escoto EsmerandoORCID,Rajhans SupriyaORCID,Leemans Wim P.,Hartl IngmarORCID,Heyl Christoph M.23

Affiliation:

1. Lund University

2. Helmholtz-Institute Jena

3. GSI Helmholtzzentrum für Schwerionenforschnung GmbH

Abstract

Ultrafast lasers reaching extremely high powers within short fractions of time enable a plethora of applications. They grant advanced material processing capabilities, are effective drivers for secondary photon and particle sources, and reveal extreme light-matter interactions. They also supply platforms for compact accelerator technologies, with great application prospects for tumor therapy or medical diagnostics. Many of these scientific cases benefit from sources with higher average and peak powers. Following mode-locked dye and titanium-doped sapphire lasers, broadband optical parametric amplifiers have emerged as high peak- and average power ultrashort pulse lasers. A much more power-efficient alternative is provided by direct post-compression of high-power diode-pumped ytterbium lasers—a route that advanced to another level with the invention of a novel spectral broadening approach, the multi-pass cell technique. The method has enabled benchmark results yielding sub-50-fs pules at average powers exceeding 1 kW, has facilitated femtosecond post-compression at pulse energies above 100 mJ with large compression ratios, and supports picosecond to few-cycle pulses with compact setups. The striking progress of the technique in the past five years puts light sources with tens to hundreds of TW peak and multiple kW of average power in sight—an entirely new parameter regime for ultrafast lasers. In this review, we introduce the underlying concepts and give brief guidelines for multi-pass cell design and implementation. We then present an overview of the achieved performances with both bulk and gas-filled multi-pass cells. Moreover, we discuss prospective advances enabled by this method, in particular including opportunities for applications demanding ultrahigh peak-power, high repetition rate lasers such as plasma accelerators and laser-driven extreme ultraviolet sources.

Funder

Vetenskapsrådet

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3