Carrier-envelope phase-stabilized ultrashort pulses from a gas-filled multi-pass cell

Author:

Khatri Dipendra1ORCID,Truong Tran-Chau1ORCID,Lantigua Christopher1ORCID,Kincaid Chelsea1ORCID,Britton Mathew2ORCID,Chini Michael134ORCID

Affiliation:

1. Department of Physics, University of Central Florida 1 , Orlando, Florida 32816, USA

2. Linac Coherent Light Source, SLAC National Accelerator Laboratory 2 , 2575 Sand Hill Road, Menlo Park, California 94025, USA

3. CREOL, The College of Optics and Photonics, University of Central Florida 3 , Orlando, Florida 32816, USA

4. Department of Physics, The Ohio State University 4 , 191 W Woodruff Ave, Columbus, Ohio 43210, USA

Abstract

Few-cycle laser pulses at a high repetition rate with a stable carrier-envelope phase are required for next-generation attosecond time-resolved spectroscopies. One way to generate these pulses is the nonlinear compression of laser pulses via gas-filled hollow-core fibers. Recently, an alternative approach based on multi-pass cells (MPCs) has been shown to be very efficient for post-compression of turn-key, industrial-grade, high average power Yb-doped solid-state laser amplifiers. However, to expand the system for exploring strong-field laser applications, its carrier-envelope phase stability needs to be demonstrated in the compressed pulses. In this Letter, we present the generation of carrier-envelope phase-stabilized 40 fs pulses with 380 μJ energy at 50 kHz by compressing the output of a Yb:KGW amplifier in a gas-filled MPC. Comparable short-term carrier-envelope phase errors of 412 and 435 mrad root mean square were observed from the amplifier and MPC, respectively, indicating that the phase stability of the amplified pulses is well-maintained during pulse compression in the MPC.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3