Affiliation:
1. CERN
2. Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie
3. Macquarie University
Abstract
Fourier-limited nanosecond pulses featuring narrow spectral bandwidths are required for applications in spectroscopy, sensing, and quantum optics. Here, we demonstrate a direct and simple route for the generation of single-frequency light relying on phonon-resonant Raman interactions within a monolithic diamond resonator. The technique enables the production of nearly Fourier-limited nanosecond optical pulses (15 ns), with an overall spectral bandwidth of down to 180 MHz, which is nearly two orders of magnitude narrower than the pump laser linewidth used (12 GHz). The power conversion efficiency was 47%, yielding a power spectral brightness enhancement of
>
50
×
compared to the pump. Our results pave the way to the integration of pulsed widely tunable, power scalable, narrow linewidth light sources into integrated photonic platforms. Furthermore, the device does not need elaborate mechanical feedback loops for cavity length or frequency stabilization, or any additional optical components.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献