Laser cooling of antihydrogen atoms

Author:

Baker C. J.,Bertsche W.,Capra A.,Carruth C.,Cesar C. L.,Charlton M.,Christensen A.,Collister R.,Mathad A. CridlandORCID,Eriksson S.,Evans A.,Evetts N.,Fajans J.ORCID,Friesen T.,Fujiwara M. C.ORCID,Gill D. R.,Grandemange P.,Granum P.ORCID,Hangst J. S.,Hardy W. N.,Hayden M. E.,Hodgkinson D.,Hunter E.,Isaac C. A.,Johnson M. A.,Jones J. M.,Jones S. A.,Jonsell S.ORCID,Khramov A.ORCID,Knapp P.,Kurchaninov L.,Madsen N.,Maxwell D.,McKenna J. T. K.,Menary S.,Michan J. M.,Momose T.,Mullan P. S.,Munich J. J.ORCID,Olchanski K.,Olin A.ORCID,Peszka J.ORCID,Powell A.,Pusa P.,Rasmussen C. Ø.ORCID,Robicheaux F.ORCID,Sacramento R. L.,Sameed M.,Sarid E.,Silveira D. M.,Starko D. M.,So C.,Stutter G.,Tharp T. D.,Thibeault A.,Thompson R. I.,van der Werf D. P.,Wurtele J. S.ORCID

Abstract

AbstractThe photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11–13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3