Learned regularization for image reconstruction in sparse-view photoacoustic tomography

Author:

Wang Tong1ORCID,He Menghui2,Shen Kang,Liu Wen1,Tian Chao2ORCID

Affiliation:

1. University of Science and Technology of China

2. Institute of Artificial Intelligence

Abstract

Constrained data acquisitions, such as sparse view measurements, are sometimes used in photoacoustic computed tomography (PACT) to accelerate data acquisition. However, it is challenging to reconstruct high-quality images under such scenarios. Iterative image reconstruction with regularization is a typical choice to solve this problem but it suffers from image artifacts. In this paper, we present a learned regularization method to suppress image artifacts in model-based iterative reconstruction in sparse view PACT. A lightweight dual-path network is designed to learn regularization features from both the data and the image domains. The network is trained and tested on both simulation and in vivo datasets and compared with other methods such as Tikhonov regularization, total variation regularization, and a U-Net based post-processing approach. Results show that although the learned regularization network possesses a size of only 0.15% of a U-Net, it outperforms other methods and converges after as few as five iterations, which takes less than one-third of the time of conventional methods. Moreover, the proposed reconstruction method incorporates the physical model of photoacoustic imaging and explores structural information from training datasets. The integration of deep learning with a physical model can potentially achieve improved imaging performance in practice.

Funder

National Natural Science Foundation of China

Anhui Provincial Department of Science and Technology

Institute of Artificial Intelligence at Hefei Comprehensive National Science Center

Zhejiang Lab

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3