Affiliation:
1. School of Information Engineering Nanchang University Nanchang China
2. Ji luan Academy Nanchang University Nanchang China
Abstract
AbstractPhotoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model‐based iterative reconstruction strategy for sparse‐view PAT aided by multi‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model‐based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse‐view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U‐Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.
Funder
Natural Science Foundation of Jiangxi Province
Key Research and Development Program of Jiangxi Province
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献