Optimization of heterogeneously integrated InP-Si on-chip photonic components

Author:

Mrowiński PawełORCID,Holewa Paweł1ORCID,Sakanas Aurimas1,Sęk Grzegorz,Semenova Elizaveta1,Syperek Marcin

Affiliation:

1. Technical University of Denmark

Abstract

We demonstrate comprehensive numerical studies on a hybrid III-V/Si-based waveguide system, serving as a platform for efficient light coupling between an integrated III-V quantum dot emitter to an on-chip quantum photonic integrated circuit defined on a silicon substrate. We propose a platform consisting of a hybrid InP/Si waveguide and an InP-embedded InAs quantum dot, emitting at the telecom C-band near 1550 nm. The platform can be fabricated using existing semiconductor processing technologies. Our numerical studies reveal nearly 87% of the optical field transfer efficiency between geometrically-optimized InP/Si and Si waveguides, considering propagating field along a tapered geometry. The coupling efficiency of a directional dipole emission to the hybrid InP/Si waveguide is evaluated to ∼38%, which results in more than 33% of the total on-chip optical field transfer efficiency from the dipole to the Si waveguide. We also consider the off-chip outcoupling efficiency of the propagating photon field along the Si waveguide by examining the normal to the chip plane and in-plane outcoupling configurations. In the former case, the outcoupling amounts to ∼26% when using the circular Bragg grating outcoupler design. In the latter case, the efficiency reaches up to 8%. Finally, we conclude that the conceptual device's performance is weakly susceptible to the transferred photon wavelength, offering a broadband operation within the 1.5-1.6 µm spectral range.

Funder

Narodowe Centrum Nauki

Danmarks Grundforskningsfond

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3