Analysis of alignment requirements for off-axis resonant cavity based on coupling efficiency

Author:

Hai HongWenORCID,Fang Sijun,Fan WenTong,Sun QiCheng,Zhao Kai,Zhang Rui,Li BoHong,Luo Jian,Song JieORCID,Cao YeHao,Li XinYu,Li ZiZheng,Fan Lei,Zhao HongChao1ORCID,Yan YongORCID

Affiliation:

1. Sun Yat-sen University

Abstract

The optical path length stability of the off-axis four-reflection telescope is one of the key technical indicators for the TianQin gravitational wave detection system. In the mHz observation band, the telescope must exhibit an optical path length stability of 0.4pm/Hz1/2. As a feasible solution, the optical path length stability measurement of the off-axis four-reflection telescope based on the Pound–Drever–Hall (PDH) technique imposes stringent requirements on the alignment of the off-axis resonant cavity (ORC). Taking the off-axis two-reflection prototype as the research object, we propose a Monte Carlo analysis-based method for ORC alignment precision analysis. By considering misalignment as an intermediate function, we establish a relationship between the coupling efficiency of the ORC and the wavefront aberration of the telescope. The research results show that by considering the combined effects of multiple misalignment couplings of the primary and secondary mirrors, when the detected telescope wavefront aberration is better than 0.068λ (λ=1064nm) with a probability of 98%, the ORC coupling efficiency can achieve greater than 40% with a probability of 97.13%, which can be used as the main reference indicator for system misalignment analysis. This method simplifies the alignment difficulty of the target under test and can provide alignment reference for subsequent resonant cavities with internal off-axis telescopes.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3