Affiliation:
1. University of Chinese Academy of Sciences
2. Chinese Academy of Sciences
Abstract
In this paper, we proposed a multilayer terahertz absorber composed of hybrid graphene and vanadium dioxide (VO2). Based on electrical controlling of graphene and thermal tuning of VO2, three different switchable absorption states are achieved in one structure. When VO2 is in the metal phase and the Fermi level of graphene is set as 0eV, high-frequency broadband (bandwidth, 5.45THz) absorption from 4.5 to 9.95THz is demonstrated. While VO2 is switched to the insulator state, absorption states depend on the Fermi energy of graphene. As the Fermi level changes from 1eV to 0eV, the absorption can be switched from low-frequency broadband (bandwidth, 2.86THz) to dual-frequency absorption. The effect of geometric parameters and fabrication tolerance on the robustness of the absorption properties is explored. The proposed absorber has three switchable states through modulation of graphene and VO2, which is expected to realize potential applications in modulating, filtering, detecting, and other fields.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
The Strategic Priority Research Program of Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献