Switchable trifunctional terahertz absorber for both broadband and narrowband operations

Author:

Zhuang Lingyun12ORCID,Zhang Wenjing1ORCID,Liu Jietao2,Chao Minghao12ORCID,Liu Qingsong12ORCID,Cheng Bo12ORCID,Xu Yun1,Song Guofeng12

Affiliation:

1. University of Chinese Academy of Sciences

2. Chinese Academy of Sciences

Abstract

In this paper, we proposed a multilayer terahertz absorber composed of hybrid graphene and vanadium dioxide (VO2). Based on electrical controlling of graphene and thermal tuning of VO2, three different switchable absorption states are achieved in one structure. When VO2 is in the metal phase and the Fermi level of graphene is set as 0eV, high-frequency broadband (bandwidth, 5.45THz) absorption from 4.5 to 9.95THz is demonstrated. While VO2 is switched to the insulator state, absorption states depend on the Fermi energy of graphene. As the Fermi level changes from 1eV to 0eV, the absorption can be switched from low-frequency broadband (bandwidth, 2.86THz) to dual-frequency absorption. The effect of geometric parameters and fabrication tolerance on the robustness of the absorption properties is explored. The proposed absorber has three switchable states through modulation of graphene and VO2, which is expected to realize potential applications in modulating, filtering, detecting, and other fields.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

The Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3