Terahertz wave interaction with metallic nanostructures

Author:

Kang Ji-Hun1,Kim Dai-Sik12,Seo Minah3

Affiliation:

1. Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

2. Center for Atom Scale Electromagnetism, Seoul National University, Seoul 151-747, Korea

3. Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea

Abstract

AbstractUnderstanding light interaction with metallic structures provides opportunities of manipulation of light, and is at the core of various research areas including terahertz (THz) optics from which diverse applications are now emerging. For instance, THz waves take full advantage of the interaction to have strong field enhancement that compensates their relatively low photon energy. As the THz field enhancement have boosted THz nonlinear studies and relevant applications, further understanding of light interaction with metallic structures is essential for advanced manipulation of light that will bring about subsequent development of THz optics. In this review, we discuss THz wave interaction with deep sub-wavelength nano structures. With focusing on the THz field enhancement by nano structures, we review fundamentals of giant field enhancement that emerges from non-resonant and resonant interactions of THz waves with nano structures in both sub- and super- skin-depth thicknesses. From that, we introduce surprisingly simple description of the field enhancement valid over many orders of magnitudes of conductivity of metal as well as many orders of magnitudes of the metal thickness. We also discuss THz interaction with structures in angstrom scale, by reviewing plasmonic quantum effect and electron tunneling with consequent nonlinear behaviors. Finally, as applications of THz interaction with nano structures, we introduce new types of THz molecule sensors, exhibiting ultrasensitive and highly selective functionalities.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3